
Algorithms and Data Structures 

Lec04 
Solving recurrences 

Dr. Mohammad Ahmad 



Comp 122 

Divide and Conquer 

• Recursive in structure   
– Divide the problem into sub-problems that are 

similar to the original but smaller in size 
– Conquer  the sub-problems by solving them 

recursively.  If they are small enough, just solve 
them in a straightforward manner. 

– Combine the solutions to create a solution to the 
original problem 
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An Example:  Merge Sort 
Sor ting Problem: Sort a sequence of n elements 

into non-decreasing order. 
 
• Divide:  Divide the n-element sequence to be 

sorted into two subsequences of n/2 elements each 
 

• Conquer :  Sort the two subsequences recursively 
using merge sort. 

 

• Combine:  Merge the two sorted subsequences to 
produce the sorted answer. 
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Merge-Sort (A, p, r) 
INPUT: a sequence of n numbers stored in array A 
OUTPUT: an ordered sequence of n numbers 
 

MergeSor t (A, p, r )   // sort A[p..r] by divide & conquer 
1 if p < r 
2     then q ← (p+r)/2 
3          MergeSort (A, p, q) 
4          MergeSort (A, q+1, r) 
5          Merge (A, p, q, r) // merges A[p..q] with A[q+1..r]  

Initial Call: MergeSort(A, 1, n) 
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Analysis of Merge Sort 
• Running time T(n) of Merge Sort: 
• Divide: computing the middle takes Θ(1)  
• Conquer: solving 2 sub-problems takes 2T(n/2)  
• Combine: merging n elements takes Θ(n)  
• Total: 

T(n) = Θ(1)    if n = 1 
T(n) = 2T(n/2) + Θ(n)  if n > 1 

 

⇒ T(n) = Θ(n lg n)  
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Recursion-tree Method 
 

• Recursion Trees 
– Show successive expansions of recurrences using 

trees. 
– Keep track of the time spent on the sub problems of 

a divide and conquer algorithm. 
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Recursion-tree method 

• A recursion tree models the costs (time) of a 
recursive execution of an algorithm. 

• The recursion tree method is good for 
generating guesses for the substitution method. 

• The recursion-tree method can be unreliable. 
• The recursion-tree method promotes intuition, 

however. 
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Recursion Tree for Merge Sort 
For the original problem, 
we have a cost of cn, 
plus two sub-problems 
each of size (n/2) and 
running time T(n/2). 

cn 

T(n/2) T(n/2) 

Each of the size n/2 problems 
has a cost of cn/2 plus two sub-
problems, each costing T(n/4). 

cn 

cn/2 cn/2 

T(n/4) T(n/4) T(n/4) T(n/4) 

Cost of divide and 
merge.  

Cost of sorting 
subproblems.  



Recursion Tree for Merge Sort 
Continue expanding until the problem size reduces to 1. 

cn 

cn/2 cn/2 

cn/4 cn/4 cn/4 cn/4 

1 1 1 1 1 1 

lg n 

cn 

cn 

cn 

cn 
Total : cnlgn+cn 



Recursion Tree for Merge Sort 

Continue expanding until the problem size reduces to 1. 
cn 

cn/2 cn/2 

cn/4 cn/4 cn/4 cn/4 

1 1 1 1 1 1 

•Each level has total cost cn. 
•Each time we go down one level, the 
number of sub-problems doubles, but 
the cost per sub-problem halves  ⇒ cost 
per level remains the same. 
•There are lg n + 1 levels, height is lg n.  
•Total cost = sum of costs at each level = 
(lg n + 1)cn = cnlgn + cn = Θ(n lgn). 
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Example of recursion tree 
Solve T(n) = T(n/4) + T(n/2) + n2: 
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Example of recursion tree 

T(n) 
Solve T(n) = T(n/4) + T(n/2) + n2: 
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Example of recursion tree 

T(n/4) T(n/2) 

n2 

Solve T(n) = T(n/4) + T(n/2) + n2: 
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Example of recursion tree 
Solve T(n) = T(n/4) + T(n/2) + n2: 

n2 

(n/4)2 (n/2)2 

T(n/16) T(n/8) T(n/8) T(n/4) 
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Example of recursion tree 

(n/16)2 (n/8)2 (n/8)2 (n/4)2 

(n/4)2 (n/2)2 

Θ(1) 

Solve T(n) = T(n/4) + T(n/2) + n2: 
n2 
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Example of recursion tree 
Solve T(n) = T(n/4) + T(n/2) + n2: 

(n/16)2 (n/8)2 (n/8)2 (n/4)2 

(n/4)2 (n/2)2 

Θ(1) 

2nn2 
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Example of recursion tree 
Solve T(n) = T(n/4) + T(n/2) + n2: 

(n/16)2 (n/8)2 (n/8)2 (n/4)2 

(n/4)2 (n/2)2 

Θ(1) 

2
16
5 n

2nn2 
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Example of recursion tree 
Solve T(n) = T(n/4) + T(n/2) + n2: 

(n/16)2 (n/8)2 (n/8)2 (n/4)2 

(n/4)2 

Θ(1) 

2
16
5 n

2n

2
256
25 n

n2 

(n/2)2 

…
 



L2.19 

Example of recursion tree 
Solve T(n) = T(n/4) + T(n/2) + n2: 

(n/16)2 (n/8)2 (n/8)2 (n/4)2 

(n/4)2 

Θ(1) 

2
16
5 n

2n

2
256
25 n

( ) ( )( ) 1 3
16
52

16
5

16
52 ++++n

…
 

Total  = 
= Θ(n2) 

n2 

(n/2)2 

geometric series 
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Geometric series 
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The master method 

The master method applies to recurrences of 
the form 

T(n) = a T(n/b) + f (n) ,  
where a ≥ 1, b > 1, and  f  is asymptotically 
positive. 
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f (n/b) 

Idea of master theorem 

f (n/b) f (n/b) 

Τ (1) 

Recursion tree: 

… 
f (n) 

a 

f (n/b2) f (n/b2) f (n/b2) … 
a h = logbn 

f (n) 

a f (n/b) 

a2 f (n/b2) 

…
 

#leaves = ah 
 = alogbn 
 = nlogba 

nlogbaΤ (1) 
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Three common cases 
Compare f (n) with nlogba: 
1.  f (n) = O(nlogba – ε) for some constant ε > 0. 

• f (n) grows polynomially slower than nlogba 
(by an nε factor). 

 Solution: T(n) = Θ(nlogba) . 
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f (n/b) 

Idea of master theorem 

f (n/b) f (n/b) 

Τ (1) 

Recursion tree: 

… 
f (n) 

a 

f (n/b2) f (n/b2) f (n/b2) … 
a h = logbn 

f (n) 

a f (n/b) 

a2 f (n/b2) 

…
 

nlogbaΤ (1) 
CASE 1: The weight increases 
geometrically from the root to the 
leaves. The leaves hold a constant 
fraction of the total weight. Θ(nlogba) 
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Three common cases 
Compare f (n) with nlogba: 

2.  f (n) = Θ(nlogba lgkn) for some constant k ≥ 0. 
• f (n) and nlogba grow at similar rates. 
Solution: T(n) = Θ(nlogba lgk+1n) . 
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f (n/b) 

Idea of master theorem 

f (n/b) f (n/b) 

Τ (1) 

Recursion tree: 

… 
f (n) 

a 

f (n/b2) f (n/b2) f (n/b2) … 
a h = logbn 

f (n) 

a f (n/b) 

a2 f (n/b2) 

…
 

nlogbaΤ (1) CASE 2: (k = 0) The weight 
is approximately the same on 
each of the logbn levels. 

Θ(nlogbalg n) 
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Three common cases (cont.) 
Compare f (n) with nlogba: 
3.  f (n) = Ω(nlogba + ε) for some constant ε > 0. 

• f (n) grows polynomially faster than nlogba (by 
an nε factor), 

 and  f (n) satisfies the regular ity condition 
that a f (n/b) ≤ c f (n) for some constant c < 1. 

 Solution: T(n) = Θ( f (n) ) . 
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f (n/b) 

Idea of master theorem 

f (n/b) f (n/b) 

Τ (1) 

Recursion tree: 

… 
f (n) 

a 

f (n/b2) f (n/b2) f (n/b2) … 
a h = logbn 

f (n) 

a f (n/b) 

a2 f (n/b2) 

…
 

nlogbaΤ (1) 
CASE 3: The weight decreases 
geometrically from the root to the 
leaves. The root holds a constant 
fraction of the total weight. Θ( f (n)) 
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Examples 

 Ex. T(n) = 4T(n/2) + n 
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n. 
 CASE 1: f (n) = O(n2 – ε) for ε = 1. 
 ∴ T(n) = Θ(n2). 

Ex. T(n) = 4T(n/2) + n2 
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2. 
  CASE 2: f (n) = Θ(n2lg0n), that is, k = 0. 
 ∴ T(n) = Θ(n2lg n). 
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Examples 

 
Ex. T(n) = 4T(n/2) + n3 
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3. 
  CASE 3: f (n) = Ω(n2 + ε) for ε = 1 
 and 4(cn/2)3 ≤ cn3 (reg. cond.) for c = 1/2. 
 ∴ T(n) = Θ(n3). 
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