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Divide and Conquer

e Recursive In structure

— Divide the problem into sub-problems that are
similar to the original but smaller in size

— Conguer the sub-problems by solving them
recursively. If they are small enough, just solve
them in a straightforward manner.

— Combine the solutions to create a solution to the
original problem
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An Example: Merge Sort

Sorting Problem: Sort a sequence of 77elements
Into non-decreasing order.

» Divide: Divide the r~element sequence to be
sorted into two subsequences of /2 elements each

e Conquer. Sort the two subsequences recursively
using merge sort.

« Combine. Merge the two sorted subsequences to
produce the sorted answer.
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Merge-Sort (A, p, 1)

INPUT: a sequence of 7numbers stored in array A
OUTPUT: an ordered sequence of 7numbers

MergeSort (A, p, r) I/ sort A[p..A by divide & conquer

1 ifp<r

2 then g« (p+D/2.

MergeSort (A, p, Q)

MergeSort (A, ¢+1, 1)

Merge (A, p, g, 1) I/ merges A[p..q] with A[g+1..A4

o1 b~ W

Initial Call: MergeSort(A, 1, n)
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Analysis of Merge Sort

* Running time 7{n) of Merge Sort:

Divide: computing the middle takes ®(1)
Conguer: solving 2 sub-problems takes 2 7{/1/2)
Combine: merging 77 elements takes ®(/)

Total:

7(n) =6(1) ifn=1
n) =27n2) +60(n 1fn>1

= 7(n) =6(nlg n)
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Recursion-tree Method

e Recursion Trees

— Show successive expansions of recurrences using
trees.

— Keep track of the time spent on the sub problems of
a divide and conquer algorithm.
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Recursion-tree method

A recursion tree models the costs (time) of a
recursive execution of an algorithm.

 The recursion tree method is good for
generating guesses for the substitution method.

e The recursion-tree method can be unreliable.

 The recursion-tree method promotes intuition,
however.
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Recursion Tree for Merge Sort

For the original problem, Each of the size /2 problems
we have a cost of c7, has a cost of ¢//2 plus two sub-
plus two sub-problems problems, each costing 7{/74).

each of size (n/2) and

running time 7{71/2). /
Cost of divide and

merge.
cn/2 cn/2

) T(l2) /
— T(nld) T(nld) 7'(n/4) T(ni4)
Cost of sorting A

subproblems.
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Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.

e .

ARR 77
R AAR
L o

Total : crgm+cn



Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.

*Each level has total cost ¢7.
*Each time we go down one level, the
number of sub-problems doubles, but
the cost per sub-problem halves = cost
per level remains the same.

/2 cnl2 *There are Ig n + 1 levels, height is Ig 7.
«Total cost = sum of costs at each level =
(lgn+1)en=cnlgn+ cn=06(nlgn).

cnl4 cnld cnld  cnla



Example of recursion tree

Solve 7(n) = T(nld) + T(n2) + r7:
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Example of recursion tree

Solve 7(n) = T(nld) + T(n2) +r7:
7(n)

L2.12



Example of recursion tree
Solve 7(n) = T(nld) + T(n2) + r7:

/72
/ \
T(114) T(112)
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Example of recursion tree
Solve 7(n) = T(nld) + T(n2) + r7:
,72
/ \
(1l4)? (1/2)?
VAN VAN

T(A16) T(A8) T(n8)  T(nl4)
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Example of recursion tree
Solve 7(n) = T(nld) + T(n2) + r7:
,72
/ \
(1l4)? (1/2)?
VAN VAN
(n16)2  (nl8)  (nl8)?  (nl4)?
o (1)
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Example of recursion tree

Solve 7(n) = T(nld) + T(n2) + r7:

(nl4)? (nl2)?
AN RN
(n16)2  (nl8)  (nl8)?  (nl4)?

o(1)
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Example of recursion tree

Solve 7(n) = T(nld) + T(n2) + r7:

(1l4)- (1U2)2 s > n2
7N 7\

(n16)2  (nl8)  (nl8)?  (nl4)?

o(1)
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Example of recursion tree

Solve 7(n) = T(nld) + T(n2) + r7:

PR e
(nl4)? (7122 e 2.0
R VRN o5
(M16)>  (n/8)>  (nl8)2  (nl4)?— Spen?
/

o(1)
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Example of recursion tree

Solve 7(n) = T(nld) + T(n2) + r7:

[P n2
(nl4)? (72)2 s 16
/ X RN o5
(M16)>  (n/8)>  (nl8)2  (nl4)?— Spen?
/ =
/
©(1) Total = n2(1+1%+(1%)2 +(15)3 +)

=O(r¥) geometric series
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Geometric series

N+l
1+x+x2+~-+x”:1 O forx-1
1— X
1+x+x2+---:1 for|x <1

1-x
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The master method

The master method applies to recurrences of
the form

In=allnb)+ n,

where 2> 1, > 1, and 7 1s asymptotically
positive.
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|dea of master theorem

Recursion tree:

| f(n)-------é ------------------------------ f(n)
T
f(nb) f(n/b) - Fn/b)— ar(n/b)
h=10g,n /\/‘)\a

f(iv?) () - f(inkp) ———— & f(n/b?)

/ :

/ " #leaves = & nlogb(;
(1) = Fogpn 7(1)

\4

= /fogpa
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Three common cases

Compare 7(77) with /70942
1. A(n) = O(r7°9r7-¢) for some constant € > 0.

e (17) grows polynomially slower than /72942
(by an /7 factor).

Solution: T(n) = O(/7°944)
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|dea of master theorem

Recursion tree:

A )y (1)
/M
() () - An/b)y——afn/b)
h=logyn S ——=<4
F(/R) F(n/P) ==+ F(AR) & (/)
/ :
: (CASE 1: The weight increases
/' |geometrically from the root to the | /7°96777(1)
| 7(1) |leaves. The leaves hold a constant
fraction of the total weight.

O(r7°99)
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Three common cases

Compare 7(77) with /70942

2. f(n) = O(r°921g%n) for some constant k> 0.
e f(n7) and /7°9%% grow at similar rates.
Solution. T(n) = ©(/7°952 lg~¥1n)
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|dea of master theorem

Recursion tree:

t f(n)-------é ------------------------------ f(n)
T
f(nb) f(n/b) - (/b)) ar(n/b)
h=10g,n /\/\_)\a
(i) () - f(inkp) & f(n/b?)
/ X

* [CASE 2: (k= 0) The weight
7(1) IS approximately the same on
each of the log,/7levels.

10962 T(1)

\4

O(r7°944g n)
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Three common cases (cont.)

Compare 7(77) with /70942

3. 1(n) = Q92+ %) for some constant ¢ > 0.

* f(n) grows polynomially faster than /7°947 (by
an /7 factor),

and 1(n) satisfies the regularity condition
that a7(rn/b) < ¢ () for some constant ¢ < 1.

Solution. T(n) =06( f(n) .
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|dea of master theorem

Recursion tree:

t f(n)"""'é """"""""""""""""" ()
e e
f(nb) f(n/b) - (/b)) ar(n/mb)
h=logyr S ——<4
F(/R) F(n/P) ==+ F(AR) & (/)
/ :
: (CASE 3: The weight decreases
/' |geometrically from the root to the | /7°96777(1)
| 7(1) |leaves. The root holds a constant
fraction of the total weight.

O(7(n))
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Examples

Ex. T(n)=4T7(n2)+n
a=4,b=2= o= r?; f(n) = n.
Case 1: f(n) = O(r7—¢) fore = 1.
s 1(n0) = O(rP).

Ex. T(n)=4T7(n2) + r¥
a=4,b=2= o= r¢; f(n) = rr.
Cask 2: (1) = ©(r#1g°n), that is, A= 0.
s T(n) = 0(rPlg n).
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Examples

Ex. TN =4Tnl2) + rP
a=4, b=2= o= r?; f(n) = rr.
Case 3: f(n)=Q(F*e)fore=1
and 4(cnl2)® < crP (reg. cond.) for c= 1/2.
5o T(0) = O(rP).
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