Algorithms and Data Structures

Lec04

Solving recurrences
Dr. Mohammad Ahmad

Divide and Conquer

- Recursive in structure
- Divide the problem into sub-problems that are similar to the original but smaller in size
- Conquer the sub-problems by solving them recursively. If they are small enough, just solve them in a straightforward manner.
- Combine the solutions to create a solution to the original problem

An Example: Merge Sort

Sorting Problem: Sort a sequence of n elements into non-decreasing order.

- Divide: Divide the n-element sequence to be sorted into two subsequences of $n / 2$ elements each
- Conquer: Sort the two subsequences recursively using merge sort.
- Combine: Merge the two sorted subsequences to produce the sorted answer.

Merge-Sort (A, p, r)

INPUT: a sequence of n numbers stored in array A OUTPUT: an ordered sequence of n numbers

```
MergeSort (A,p,r) // sort A[p..r] by divide & conquer
1 if p<r
2 then }q\leftarrow\lfloor(p+r)/2
3 MergeSort (A, p,q)
4 MergeSort ( }A,q+1,r
5 Merge ( }A,p,q,r)// merges A[p..q] with A[q+1..r
```

Initial Call: $\operatorname{MergeSort}(A, 1, n)$

Analysis of Merge Sort

- Running time $\boldsymbol{T}(\mathbf{n})$ of Merge Sort:
- Divide: computing the middle takes $\Theta(1)$
- Conquer: solving 2 sub-problems takes $2 \pi(n / 2)$
- Combine: merging n elements takes $\Theta(n)$
- Total:

$$
\begin{array}{rlr}
\pi(n)=\Theta(1) & \text { if } n=1 \\
T(n)=2 T(n / 2)+\Theta(n) & \text { if } n>1 \\
\Rightarrow T(n)=\Theta(n \lg n) &
\end{array}
$$

Recursion-tree Method

- Recursion Trees
- Show successive expansions of recurrences using trees.
- Keep track of the time spent on the sub problems of a divide and conquer algorithm.

Recursion-tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion tree method is good for generating guesses for the substitution method.
- The recursion-tree method can be unreliable.
- The recursion-tree method promotes intuition, however.

Recursion Tree for Merge Sort

For the original problem, we have a cost of $c n$, plus two sub-problems each of size ($n / 2$) and running time $T(n / 2)$.

Each of the size $n / 2$ problems has a cost of $c n / 2$ plus two subproblems, each costing $T(n / 4)$.

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1 .

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1 .

-Each level has total cost $c n$.
-Each time we go down one level, the number of sub-problems doubles, but the cost per sub-problem halves \Rightarrow cost per level remains the same.
\cdot There are $\lg n+1$ levels, height is $\lg n$.
-Total cost $=$ sum of costs at each level $=$ $(\lg n+1) c n=c n \lg n+c n=\Theta(n \lg n)$.

Example of recursion tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}:$

Example of recursion tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

$$
T(n)
$$

Example of recursion tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}:$

$$
T(n / 4)<n_{T(n / 2)}^{n^{2}}
$$

Example of recursion tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}:$

Example of recursion tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}:$

Example of recursion tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}:$

Example of recursion tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of recursion tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Example of recursion tree

Solve $T(n)=T(n / 4)+T(n / 2)+n^{2}$:

Geometric series

$$
\begin{gathered}
1+x+x^{2}+\cdots+x^{n}=\frac{1-x^{n+1}}{1-x} \text { for } x \neq 1 \\
1+x+x^{2}+\cdots=\frac{1}{1-x} \text { for }|x|<1
\end{gathered}
$$

The master method

The master method applies to recurrences of the form

$$
T(n)=a T(n / b)+f(n),
$$

where $a \geq 1, b>1$, and f is asymptotically positive.

Idea of master theorem

Recursion tree:

Three common cases

Compare $f(n)$ with $n^{\log b a}$:

1. $f(n)=O\left(n^{\log b^{a-\varepsilon}}\right)$ for some constant $\varepsilon>0$.

- $f(n)$ grows polynomially slower than $n^{\log b^{a}}$ (by an n^{ε} factor).
Solution: $T(n)=\Theta\left(n^{\log b^{a}}\right)$.

Idea of master theorem

Recursion tree:

Three common cases

Compare $f(n)$ with $n^{\log b a}$:
2. $f(n)=\Theta\left(n^{\log _{b a}} \lg ^{k} n\right)$ for some constant $k \geq 0$. - $f(n)$ and $n^{\log _{b a}}$ grow at similar rates. Solution: $T(n)=\Theta\left(n^{\log _{b a}} \lg ^{k+1} n\right)$.

Idea of master theorem

Recursion tree:

Three common cases (cont.)

Compare $f(n)$ with $n^{\log b a}$:
3. $f(n)=\Omega\left(n^{\log _{b a}+\varepsilon}\right)$ for some constant $\varepsilon>0$.

- $f(n)$ grows polynomially faster than $n^{\log b a}$ (by an n^{8} factor),
and $f(n)$ satisfies the regularity condition that $a f(n / b) \leq c f(n)$ for some constant $c<1$.
Solution: $T(n)=\Theta(f(n))$.

Idea of master theorem

Recursion tree:

Examples

$$
\begin{aligned}
& \text { Ex. } T(n)=4 T(n / 2)+n \\
& \quad a=4, b=2 \Rightarrow n^{\log g}=n^{2} ; f(n)=n \\
& \quad \text { CASE 1: } f(n)=O\left(n^{2}-\varepsilon\right) \text { for } \varepsilon=1 . \\
& \therefore T(n)=\Theta\left(n^{2}\right) .
\end{aligned}
$$

$$
\text { EX. } T(n)=4 T(n / 2)+n^{2}
$$

$$
a=4, b=2 \Rightarrow n^{\log b^{a}}=n^{2} ; f(n)=n^{2} .
$$

$$
\text { CASE 2: } f(n)=\Theta\left(n^{2} \lg ^{0} n\right) \text {, that is, } k=0
$$

$$
\therefore \pi(n)=\Theta\left(n^{2} \lg n\right) .
$$

Examples

$$
\begin{aligned}
& \text { EX. } T(n)=4 T(n / 2)+n^{3} \\
& \quad a=4, b=2 \Rightarrow n^{\log b a}=n^{2} ; f(n)=n^{3} \\
& \text { CASE 3: } f(n)=\Omega\left(n^{2+\varepsilon}\right) \text { for } \varepsilon=1 \\
& \text { and } 4(c n / 2)^{3} \leq c n^{3} \text { (reg. cond.) for } c=1 / 2 . \\
& \therefore T(n)=\Theta\left(n^{3}\right) .
\end{aligned}
$$

