Algorithms and Data Structures

Lec04

Solving recurrences Dr. Mohammad Ahmad

Divide and Conquer

- Recursive in structure
 - *Divide* the problem into sub-problems that are similar to the original but smaller in size
 - *Conquer* the sub-problems by solving them recursively. If they are small enough, just solve them in a straightforward manner.
 - *Combine* the solutions to create a solution to the original problem

An Example: Merge Sort

Sorting Problem: Sort a sequence of *n* elements into non-decreasing order.

- *Divide*: Divide the *n*-element sequence to be sorted into two subsequences of *n*/2 elements each
- *Conquer:* Sort the two subsequences recursively using merge sort.
- *Combine*: Merge the two sorted subsequences to produce the sorted answer.

Merge-Sort (A, p, r)

INPUT: a sequence of *n* numbers stored in array A **OUTPUT:** an ordered sequence of *n* numbers

MergeSort (A, p, r)// sort A[p..r] by divide & conquer1if p < r2then $q \leftarrow \lfloor (p+r)/2 \rfloor$ 3MergeSort (A, p, q)4MergeSort (A, q+1, r)5Merge (A, p, q, r) // merges A[p..q] with A[q+1..r]

Initial Call: MergeSort(A, 1, n)

Analysis of Merge Sort

- Running time **T**(**n**) of Merge Sort:
- Divide: computing the middle takes $\Theta(1)$
- Conquer: solving 2 sub-problems takes 2T(n/2)
- Combine: merging *n* elements takes $\Theta(n)$
- Total:

 $T(n) = \Theta(1) \quad \text{if } n = 1$ $T(n) = 2T(n/2) + \Theta(n) \quad \text{if } n > 1$

 \Rightarrow $T(n) = \Theta(n \lg n)$

Recursion-tree Method

- Recursion Trees
 - Show successive expansions of recurrences using trees.
 - Keep track of the time spent on the sub problems of a divide and conquer algorithm.

Recursion-tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion tree method is good for generating guesses for the substitution method.
- The recursion-tree method can be unreliable.
- The recursion-tree method promotes intuition, however.

Recursion Tree for Merge Sort

For the original problem, we have a cost of *cn*, plus two sub-problems each of size (n/2) and running time T(n/2).

Each of the size n/2 problems has a cost of cn/2 plus two subproblems, each costing T(n/4).

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.

cn/2*cn*/4 *cn*/4 *cn*/4 *cn*/4

Each level has total cost *cn*.
Each time we go down one level, the number of sub-problems doubles, but the cost per sub-problem halves ⇒ *cost per level remains the same*.

•There are $\lg n + 1$ levels, height is $\lg n$. •Total cost = sum of costs at each level = $(\lg n + 1)cn = cn\lg n + cn = \Theta(n\lg n)$.

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

T(*n*)

T(*n*/2)

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

T(*n*/4)

 n^2

T(n/8)

 $(n/2)^2$

T(n/4)

Solve $T(n) = T(n/4) + T(n/2) + n^2$:

 $(n/4)^2$

T(n/16) T(n/8)

 n^2

Geometric series

$$1 + x + x^{2} + \dots + x^{n} = \frac{1 - x^{n+1}}{1 - x}$$
 for $x \neq 1$

$$1 + x + x^2 + \dots = \frac{1}{1 - x}$$
 for $|x| < 1$

The master method

The master method applies to recurrences of the form

T(n) = a T(n/b) + f(n),where $a \ge 1$, b > 1, and f is asymptotically positive.

Idea of master theorem

Recursion tree: f(n)f(n)а af(n/b)f(n/b) f(n/b) $\cdots f(n/b)$ a $h = \log_{h} n$ $f(n/b^2)$ $f(n/b^2)$ \cdots $f(n/b^2)$ $a^{2} f(n/b^{2})$ #leaves = a^h $n^{\log b^a}T(1)$ $= a^{\log_b n}$ $= n^{\log b^a}$

Three common cases

Compare f(n) with $n^{\log b^a}$:

1. $f(n) = O(n^{\log b^a - \varepsilon})$ for some constant $\varepsilon > 0$.

f(n) grows polynomially slower than n^{logba}
 (by an n^c factor).

Solution: $T(n) = \Theta(n^{\log b^a})$

Idea of master theorem

Recursion tree: *t*(*n*) f(n)af(n/b)f(n/b) $\cdots f(n/b)$ f(n/b) $h = \log_{h} n$ $a^{2} f(n/b^{2})$ $f(n/b^2)$ $f(n/b^2)$ ··· $f(n/b^2)$ **CASE 1**: The weight increases geometrically from the root to the $n^{\log b^a}T(1)$ leaves. The leaves hold a constant fraction of the total weight.

Three common cases

Compare f(n) with $n^{\log b^a}$:

2. f(n) = Θ(n^{logba}lg^kn) for some constant k≥ 0.
f(n) and n^{logba} grow at similar rates. *Solution:* T(n) = Θ(n^{logba}lg^{k+1}n).

Idea of master theorem

Recursion tree: f(n)f(n)af(n/b)f(n/b) $\cdots f(n/b)$ f(n/b)а $h = \log_{h} n$ $a^{2} f(n/b^{2})$ $f(n/b^2) f(n/b^2) \cdots f(n/b^2)$ CASE 2: (k=0) The weight $n^{\log b^a}T(1)$ is approximately the same on each of the $\log_{h} n$ levels. $\Theta(n^{\log b^a}] \ge n$

Three common cases (cont.)

Compare f(n) with $n^{\log b^a}$:

3. $f(n) = \Omega(n^{\log b^a + \varepsilon})$ for some constant $\varepsilon > 0$.

f(n) grows polynomially faster than n^{logba} (by an n^ε factor),

and f(n) satisfies the *regularity condition* that $a f(n/b) \le c f(n)$ for some constant c < 1. Solution: $T(n) = \Theta(f(n))$.

Idea of master theorem

Recursion tree: *t*(*n*) f(n) $\cdots f(n/b)$ af(n/b)f(n/b)f(n/b) $h = \log_{h} n$ $a^{2} f(n/b^{2})$ $f(n/b^2) f(n/b^2) \cdots f(n/b^2)$ **CASE 3**: The weight decreases geometrically from the root to the $n^{\log b^a}T(1)$ leaves. The root holds a constant fraction of the total weight. $\Theta(f(n))$

Examples

Ex. T(n) = 4 T(n/2) + n $a = 4, b = 2 \Rightarrow n^{\log b^a} = n^2; f(n) = n.$ **CASE 1**: $f(n) = O(n^{2-\varepsilon})$ for $\varepsilon = 1.$ $\therefore T(n) = \Theta(n^2).$

Ex.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log b^2} = n^2; f(n) = n^2.$
CASE 2: $f(n) = \Theta(n^2 \lg^0 n)$, that is, $k = 0.$
 $\therefore T(n) = \Theta(n^2 \lg n).$

Examples

Ex. $T(n) = 4 T(n/2) + n^3$ $a = 4, b = 2 \Rightarrow n^{\log b^3} = n^2; f(n) = n^3.$ **CASE 3**: $f(n) = \Omega(n^{2+\varepsilon})$ for $\varepsilon = 1$ and $4(cn/2)^3 \le cn^3$ (reg. cond.) for c = 1/2. $\therefore T(n) = \Theta(n^3).$