
Algorithms and Data Structures

Lec04
Solving recurrences

Dr. Mohammad Ahmad

Comp 122

Divide and Conquer

• Recursive in structure
– Divide the problem into sub-problems that are

similar to the original but smaller in size
– Conquer the sub-problems by solving them

recursively. If they are small enough, just solve
them in a straightforward manner.

– Combine the solutions to create a solution to the
original problem

Comp 122

An Example: Merge Sort
Sor ting Problem: Sort a sequence of n elements

into non-decreasing order.

• Divide: Divide the n-element sequence to be

sorted into two subsequences of n/2 elements each

• Conquer : Sort the two subsequences recursively
using merge sort.

• Combine: Merge the two sorted subsequences to
produce the sorted answer.

Comp 122

Merge-Sort (A, p, r)
INPUT: a sequence of n numbers stored in array A
OUTPUT: an ordered sequence of n numbers

MergeSor t (A, p, r) // sort A[p..r] by divide & conquer
1 if p < r
2 then q ← (p+r)/2
3 MergeSort (A, p, q)
4 MergeSort (A, q+1, r)
5 Merge (A, p, q, r) // merges A[p..q] with A[q+1..r]

Initial Call: MergeSort(A, 1, n)

Comp 122

Analysis of Merge Sort
• Running time T(n) of Merge Sort:
• Divide: computing the middle takes Θ(1)
• Conquer: solving 2 sub-problems takes 2T(n/2)
• Combine: merging n elements takes Θ(n)
• Total:

T(n) = Θ(1) if n = 1
T(n) = 2T(n/2) + Θ(n) if n > 1

⇒ T(n) = Θ(n lg n)

Comp 122

Recursion-tree Method

• Recursion Trees
– Show successive expansions of recurrences using

trees.
– Keep track of the time spent on the sub problems of

a divide and conquer algorithm.

L2.7

Recursion-tree method

• A recursion tree models the costs (time) of a
recursive execution of an algorithm.

• The recursion tree method is good for
generating guesses for the substitution method.

• The recursion-tree method can be unreliable.
• The recursion-tree method promotes intuition,

however.

Comp 122

Recursion Tree for Merge Sort
For the original problem,
we have a cost of cn,
plus two sub-problems
each of size (n/2) and
running time T(n/2).

cn

T(n/2) T(n/2)

Each of the size n/2 problems
has a cost of cn/2 plus two sub-
problems, each costing T(n/4).

cn

cn/2 cn/2

T(n/4) T(n/4) T(n/4) T(n/4)

Cost of divide and
merge.

Cost of sorting
subproblems.

Recursion Tree for Merge Sort
Continue expanding until the problem size reduces to 1.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

1 1 1 1 1 1

lg n

cn

cn

cn

cn
Total : cnlgn+cn

Recursion Tree for Merge Sort

Continue expanding until the problem size reduces to 1.
cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

1 1 1 1 1 1

•Each level has total cost cn.
•Each time we go down one level, the
number of sub-problems doubles, but
the cost per sub-problem halves ⇒ cost
per level remains the same.
•There are lg n + 1 levels, height is lg n.
•Total cost = sum of costs at each level =
(lg n + 1)cn = cnlgn + cn = Θ(n lgn).

L2.11

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

L2.12

Example of recursion tree

T(n)
Solve T(n) = T(n/4) + T(n/2) + n2:

L2.13

Example of recursion tree

T(n/4) T(n/2)

n2

Solve T(n) = T(n/4) + T(n/2) + n2:

L2.14

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

n2

(n/4)2 (n/2)2

T(n/16) T(n/8) T(n/8) T(n/4)

L2.15

Example of recursion tree

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Θ(1)

Solve T(n) = T(n/4) + T(n/2) + n2:
n2

L2.16

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Θ(1)

2nn2

L2.17

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2 (n/2)2

Θ(1)

2
16
5 n

2nn2

L2.18

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2

Θ(1)

2
16
5 n

2n

2
256
25 n

n2

(n/2)2

…

L2.19

Example of recursion tree
Solve T(n) = T(n/4) + T(n/2) + n2:

(n/16)2 (n/8)2 (n/8)2 (n/4)2

(n/4)2

Θ(1)

2
16
5 n

2n

2
256
25 n

() ()() 1 3
16
52

16
5

16
52 ++++n

…

Total =
= Θ(n2)

n2

(n/2)2

geometric series

L2.20

Geometric series

1

11 2
x

xx
−

=+++  for |x| < 1

1

11
1

2
x

xxxx
n

n
−

−=++++
+

 for x ≠ 1

L2.21

The master method

The master method applies to recurrences of
the form

T(n) = a T(n/b) + f (n) ,
where a ≥ 1, b > 1, and f is asymptotically
positive.

L2.22

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

Recursion tree:

…
f (n)

a

f (n/b2) f (n/b2) f (n/b2) …
a h = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

#leaves = ah
 = alogbn
 = nlogba

nlogbaΤ (1)

L2.23

Three common cases
Compare f (n) with nlogba:
1. f (n) = O(nlogba – ε) for some constant ε > 0.

• f (n) grows polynomially slower than nlogba
(by an nε factor).

 Solution: T(n) = Θ(nlogba) .

L2.24

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

Recursion tree:

…
f (n)

a

f (n/b2) f (n/b2) f (n/b2) …
a h = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

nlogbaΤ (1)
CASE 1: The weight increases
geometrically from the root to the
leaves. The leaves hold a constant
fraction of the total weight. Θ(nlogba)

L2.25

Three common cases
Compare f (n) with nlogba:

2. f (n) = Θ(nlogba lgkn) for some constant k ≥ 0.
• f (n) and nlogba grow at similar rates.
Solution: T(n) = Θ(nlogba lgk+1n) .

L2.26

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

Recursion tree:

…
f (n)

a

f (n/b2) f (n/b2) f (n/b2) …
a h = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

nlogbaΤ (1) CASE 2: (k = 0) The weight
is approximately the same on
each of the logbn levels.

Θ(nlogbalg n)

L2.27

Three common cases (cont.)
Compare f (n) with nlogba:
3. f (n) = Ω(nlogba + ε) for some constant ε > 0.

• f (n) grows polynomially faster than nlogba (by
an nε factor),

 and f (n) satisfies the regular ity condition
that a f (n/b) ≤ c f (n) for some constant c < 1.

 Solution: T(n) = Θ(f (n)) .

L2.28

f (n/b)

Idea of master theorem

f (n/b) f (n/b)

Τ (1)

Recursion tree:

…
f (n)

a

f (n/b2) f (n/b2) f (n/b2) …
a h = logbn

f (n)

a f (n/b)

a2 f (n/b2)

…

nlogbaΤ (1)
CASE 3: The weight decreases
geometrically from the root to the
leaves. The root holds a constant
fraction of the total weight. Θ(f (n))

L2.29

Examples

 Ex. T(n) = 4T(n/2) + n
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n.
 CASE 1: f (n) = O(n2 – ε) for ε = 1.
 ∴ T(n) = Θ(n2).

Ex. T(n) = 4T(n/2) + n2
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2.
 CASE 2: f (n) = Θ(n2lg0n), that is, k = 0.
 ∴ T(n) = Θ(n2lg n).

L2.30

Examples

Ex. T(n) = 4T(n/2) + n3
 a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3.
 CASE 3: f (n) = Ω(n2 + ε) for ε = 1
 and 4(cn/2)3 ≤ cn3 (reg. cond.) for c = 1/2.
 ∴ T(n) = Θ(n3).

	Algorithms and Data Structures
	Divide and Conquer
	An Example: Merge Sort
	Merge-Sort (A, p, r)
	Analysis of Merge Sort
	Recursion-tree Method
	Recursion-tree method
	Recursion Tree for Merge Sort
	Recursion Tree for Merge Sort
	Recursion Tree for Merge Sort
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Example of recursion tree
	Geometric series
	The master method
	Idea of master theorem
	Three common cases
	Idea of master theorem
	Three common cases
	Idea of master theorem
	Three common cases (cont.)
	Idea of master theorem
	Examples
	Examples

